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ABSTRACT 
An adaptive mesh refinement procedure that uses nodeless variables and quadratic interpolation functions 
is presented for analysing transient thermal problems. A temperature based finite element scheme with 
Crank-Nicolson time marching is used to obtain the thermal solution. The strategies used for mesh 
adaptation, computing refinement indicators, and time marching are described. Examples in one and two 
dimensions are presented and comparisons are made with exact solutions. The effectiveness of this procedure 
for transient thermal analysis is reflected in good solution accuracy, reduction in number of elements used, 
and computational efficiency. 
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NOMENCLATURE 

c = specific heat 
cs = time step factor 
[ C ] = element capacitance matrix 
k = thermal conductivity 
[ K ] = element conductance matrix 
L = element length, (2), area coordinate, (9) 
n = number of nodes 
[ N ] = element interpolation functions 
qi = components of heat flux rate vector 
Q = internal heat generation rate 
ri = refinement indicator 
{R} = load vector 
t = time 
T = temperature in K 
7} = temperature = 1.8*T - 460 
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= global coordinates 
= global coordinate = x/0.0254 
= global coordinate = y/0.0254 
= mesh spacings along x, y coordinates 
= time step 
= threshold for refinement 
= threshold for derefinement 
= local coordinates 
= element area 
= gradient operator 
= density 
= thermal diffusivity = k/pc 
= parameter for transient scheme 
= domain of interest 

= average value 
= element index, (12) 
= initial value 
= index for nodes 
= maximum value 
= time between refinements 
= coordinate directions 

= element value 
= time step index 

INTRODUCTION 

Accurate determination of structural temperature response due to thermal loads is of critical 
importance in high-speed aerospace vehicle design. Advanced vehicles such as the National 
Aerospace Plane are envisaged to travel at speeds exceeding Mach 15. At these speeds, 
aerodynamic heating on body surfaces can produce high temperature gradients and attendant 
thermal stresses that have a major impact on the performance of such vehicles. The need to 
accurately predict deformations and stresses points to the development of improved thermal 
and structural analysis procedures. These procedures should include the capability to describe 
steep temperature gradients that vary temporally and spatially. 

Finite element methods have proven to be effective tools for thermal and structural analyses1. 
In predicting temperature response, basic thermal elements are normally formulated assuming 
a linear temperature distribution. Hence, a large number of elements are needed in regions of 
severe gradients to accurately capture the non-linear temperature distributions. This is especially 
true for highly transient problems where the location of thermal loads can vary in space and time. 

One of the main concerns for hypersonic flight is high localized thermal fluxes caused by the 
impingement of shocks generated by the vehicle nose or inlet compression ramps on engine cowl 
leading edges. An accurate prediction of temperature levels, gradients and attendant thermal 
stresses requires small mesh spacings at early times when thermal gradients are high and larger 
spacings when these gradients decrease due to conduction. 
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The methodology proposed in this paper uses a refinement scheme with element sizes being 
adapted at specified intervals to track time-dependent gradients. Finite elements with quadratic 
element interpolation functions are used in this adaptation procedure to enable accurate modelling 
of severe gradients with a minimal number of mesh points. The intent of this paper is to 
demonstrate the effectiveness of this new approach for accurately predicting the transient 
temperature response and its gradients due to aerodynamic heating. 

MESH ADAPTATION 

Mesh adaptation schemes that are commonly used are mesh movement, mesh enrichment, and 
mesh regeneration. Mesh movement schemes move the nodes to regions of high gradients while 
holding the number of elements in a mesh constant. Mesh enrichment consists of adding elements 
in regions where solution gradients are high. Mesh regeneration constructs an entirely new mesh 
based on solutions obtained on a previous mesh. 

The use of mesh movement to predict steep temperature gradients for one dimensional transient 
thermal problems was presented by Hogge and Gerrekens2. This adaptive procedure used 
the concept of one-dimensional heat penetration depth which limits its applicability in 
multi-dimensions. An adaptive scheme for transient one-dimensional heat transfer which included 
mesh movement with local mesh refinement was detailed by Adjerid and Flaherty3. The use of 
an adaptive remeshing procedure using quadrilateral and triangular elements for two dimensional 
steady heat conduction was recently presented by Thornton and Vemaganti4, and applications 
of a remeshing scheme using triangular elements for coupled fluid-thermal-structural applications 
was presented by Dechaumphai5. Convergence to steady state is achieved in these approaches 
by obtaining solutions on a succession of meshes with the finite element mesh being recreated 
at each adaptation. The use of an adaptive mesh refinement scheme using quadrilateral elements 
for analysing a class of linear elliptic boundary-value problems was presented by Demkowicz 
et al.6. The methodology described in the present paper uses adaptive enrichment and coarsening 
concepts to model transient heat transfer in one and two dimensions. 

Adaptive procedure 
A classical mesh refinement scheme in the context of the finite element method is the addition 

of elements in regions of high gradients. Elements that lie in these regions are identified by 
refinement indicators and subdivided. The rationale for using refinement indicators is that, while 
it is possible to predict the location of strong gradients for some thermal problems, the analyst 
in general does not have a priori knowledge of the location of these regions. All elements in the 
mesh that have indicators above a preset threshold value are enriched while those elements that 
have values below a threshold derefinement value are coarsened. On refinement of a typical 
element, the 'sub-elements' that result could be all quadrilaterals, or a combination of 
quadrilaterals and triangles. The number and type of the resulting sub-elements depend on the 
refinement level of the surrounding elements. The elements that result in a typical refinement 
and coarsening procedure are shown in Figure 1. The initial mesh with elements B, C and D to 
be refined is seen in Figure la. The mesh after refinement of these elements is shown in Figure lb. 
If, on this refined mesh, element group C which includes elements CI, C2, C3 and C4, needs to 
be coarsened, the mesh obtained after derefinement appears in Figure lc. 

The method adopted in this paper is to complete an analysis on a given mesh and then refine 
the mesh at certain user-specified time intervals in the transient analysis. The refinement at this 
time is based on indicators computed on the solution obtained on the original mesh. Details of 
the adaptive refinement scheme used herein are found in Reference 7. 
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The effectiveness of the transient adaptation procedure hinges on obtaining accurate 
temperatures at nodes created when elements are added and/or removed. Nodal temperatures 
of the newly created nodes are interpolated from the temperatures on the original mesh. Using 
elements with linear interpolation functions to model a domain yields inaccurate values for 
added nodes, especially those in regions of high gradients. These inaccuracies in turn have an 
adverse effect on the quality of the predicted transient response. Element distributions that yield 
better estimates for temperatures at newly created nodes are thus essential to model time 
dependent heat transfer. 

Two ways to obtain a more realistic element temperature distribution are to use either higher 
order elements, which increases the number of nodes per element, or employ 'nodeless variable' 
elements which use hierarchical interpolation functions8. The advantage of the nodeless variable 
approach is that the geometric model used for finite element analyses is the same irrespective 
of the degree of polynomial used for element interpolation functions. The mesh that is employed 
for thermal analysis could also be used for structural analysis using either linear or nodeless 
variable elements. 

NODELESS VARIABLE FINITE ELEMENTS 
Dechaumphai and Thornton8 developed nodeless variable quadrilateral finite elements for 
thermal and structural applications and demonstrated improved accuracy and efficiency in both 
applications. Elements may have one, two or more nodeless variables per element, depending 
on the order of the polynomial used to represent the element interpolation functions. The present 
effort employs one nodeless variable per element in one dimension, and three and four nodeless 
variables in two dimensions for triangular and quadrilateral elements respectively to obtain 
quadratic element temperature distributions. 

One-dimensional nodeless variables 
In one dimension, the temperature distribution for a linear element is given by: 

where 7] are the nodal temperatures and Ni are the interpolation functions given by: 
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where x is a local coordinate along the element length L. For a nodeless variable finite element 
with one nodeless variable, the temperature distribution is given by: 

where N3 is the nodeless variable interpolation function given by: 

and T3 is the nodeless variable temperature. The additional term in the element distribution in 
(3), associated with the nodeless variable T3, allows for a non-linear description of the element 
temperature distribution. Temperature distributions for a one-dimensional element at various 
time intervals are shown in Figure 2. Distributions in a linear element are shown in Figure 2a, 
while the corresponding element temperature distributions using a finite element with one nodeless 
variable are shown in Figure 2b. The addition of the nodeless variable implies that the temperature 
variation within an element can change even if the nodal temperatures remain fixed. This situation 
could arise with internal heat generation or heat transfer on an element surface. 
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Two-dimensional nodeless variables 
The conventional four-node element with a general quadrilateral shape has bilinear element 

interpolation functions given by: 

where ζ and η are local coordinates. The switch from global (x, y) coordinates to a local coordinate 
system is done to simplify evaluation of integrals over element areas or volumes. The local and 
global coordinate systems are related by: 

In order to have a non-linear temperature distribution along the edges of an element as well as 
in its interior, nodeless variables are defined along element edges with edge interpolation functions 
given by: 

where, for instance, N5 varies quadratically between nodes 1 and 2 and is zero along the other 
three edges. The distribution of temperature for a typical nodeless variable quadrilateral element 
is given by: 

where Nt to N4 (5) are the same as the conventional bilinear interpolation functions, and N5 
to N8 (7) are the nodeless variable quadratic interpolation functions. 

For a linear triangular element, the interpolation functions are the same as the area coordinates 
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and the temperature variation along each element edge is linear. The area coordinates are given 
by9: 

where A is the area of the triangle, and ai, b{ and ci are functions of nodal coordinates. To allow 
for a non-linear temperature variation along the edges of an element as well as its interior, 
nodeless variables are added along each edge. The quadratic interpolation functions for nodeless 
variable triangular elements are given by: 

The temperature distribution for a typical nodeless variable triangular element is: 

As with the quadrilateral elements, the shape functions at the physical nodes are exactly those 
of linear elements while N4, Ns and N6 are the nodeless variable interpolation functions. 
Inter-element compatibility is preserved for adjacent elements by having a common nodeless 
variable on adjoining edges. Temperature distributions for typical quadrilateral and triangular 
elements with quadratic interpolation functions are contrasted with conventional quadrilateral 
and triangular elements in Figure 3. 

Refinement indicators 
The intent of the refinement procedure is to enhance solution quality by decreasing the size 

of key elements and improve efficiency by reducing the number of unknowns. The strategy 
adopted in this paper is to refine elements that lie in regions where the changes in temperature 
gradients are severe. For elements with interpolation functions given by (3), (8) and (11), the 
nodeless variable (or variables) in each element is a direct measure of deviation of the element 
temperature distribution from linear. For one-dimensional problems, the refinement indicator 
for a typical element is: 

where T3 is the nodeless variable temperature for that element and Tav is the average temperature 
in the element given by: 

The notion of using nodeless variables to define refinement indicators extends to two 
dimensions, with nodeless variables along element edges being a measure of the non-linear 
variation of temperature along those edges. In the case of a quadrilateral or triangular element, 
the maximum of the nodeless variables on element sides is taken as a refinement measure. For 
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a quadrilateral element the refinement indicator is computed as: 

and Tav is the average element temperature based on the temperatures at the four physical nodes 
of the element. 

The adaptive refinement procedure refines all elements that satisfy the criterion, ri > α, and 
derefines all elements that satisfy βi < β, where a and β are preset refinement and derefinement 
threshold constants, respectively. 

SOLUTION METHODOLOGY 
The classical finite element approach for transient heat transfer is based upon using temperature 
as the dependent variable. A terse description of the problem statement, the finite element 
equations, and the time marching scheme follows. 

Problem statement 
Consider a solid bounded by surface ∂Ω. The problem is governed by the energy equation, 

where p is the density, c is the temperature dependent specific heat, qt are components of the 
heat flux rate vector, and Q is the internal heat generation rate per unit volume. From Fourier's 
law, 

where kij is the symmetric temperature dependent conductivity tensor. If Fourier's law is 
substituted into the energy equation, the parabolic transient heat conduction equation is obtained. 
This heat conduction equation is solved subject to appropriate initial and boundary conditions. 
An initial condition is specified throughout the domain and boundary conditions may take 
several forms such as specified temperature, specified heat flux rate, convective heat exchange, 
and radiative heat exchange. 

Finite element equations 
The solution domain is divided into elements and temperature and temperature gradients 

within an element are interpolated from nodal temperatures by: 

where [N] is a row matrix of the temperature interpolation functions. Using the method of 
weighted residuals9 and integrating the heat flux gradient term by parts yields typical element 
equations of the form: 
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where the capacitance matrix [C] is given by: 

and the conductance matrix [X] is given by: 

The element load vector {R} is given by: 

In one dimension, element capacitance and conductance matrices are 3 x 3 matrices for nodeless 
variable finite elements. In two dimensions, these matrices are 8 x 8 for a quadrilateral element 
and 6 x 6 for a triangular element. The finite element equations are assembled to form the global 
system of equations which is solved using a profile10 solver. 
Time marching scheme 

The temperature formulation of non-linear heat transfer problems is described by (18). The 
transient solution is computed by a time marching method with an implicit, one parameter 9 
scheme9 for time integration. If tn is a typical time and tθ is defined as tθ = tn + θ Δt the element 
equations are written as, 

The Crank-Nicolson approximations are given by, 

These approximations are introduced into (22) to yield the time marching procedure, 

which can be rewritten in 'delta' form as, 

The time marching procedure is unconditionally stable for θ ≥ 0.5 and conditionally stable for 
θ < 0.5. Nodeless variable finite elements necessitate the use of the full capacitance matrix in 
(25), precluding explicit time stepping even for 9 = 0. 

COMPUTATIONAL STRATEGIES 
In transient heat transfer analyses, problems that have sudden changes in specified heat flux or 
temperature boundary conditions are common. Examples include shocks traversing the leading 
edge of a cowl of a hypersonic flight vehicle and laser-induced irradiations. To track transients 
accurately, two approaches are examined. The first approach uses a predictor-corrector concept 
while the second is a one-step approach which is less sophisticated but easier to implement. 



526 R. RAMAKRISHNAN ET AL. 

For both approaches tref denotes the time when mesh adaptations are to be done and Δref 
the time between refinements. The thermal analysis is started at time fini and the maximum 
allowable time step is Δfm. The value of Δtm is reset inside the time marching procedure such 
that Δref is a multiple of the maximum allowable time step. 

Approach 1 
(1) At time fini for the initial mesh compute Δtm 
(2) Set index for refinement counter to zero 
(3) Advance the solution to time fref 
(4) Compute refinement indicators for the mesh based on temperature distribution at tref; 

(a) check maximum value of refinement indicator. If maximum value < preset limit, go to (8). 
(b) increment index: If index > preset maximum value, go to (8). 

(5) Refine and/or coarsen the mesh based on the refinement indicators using the nodal values 
at time tini 

(6) Calculate Δtm and march the solution in time from fini to fref 
(7) Go to step (4) 
(8) Update: 

(9) Go to step (2) 
The above approach yields good time accuracy since the solutions at any time are not stepped 

forward in time until preset refinement criteria are met. The drawbacks of the approach are that 
if the initial mesh used is crude repeated analysis will be needed at early time levels, and the 
preset limit of the refinement indicator sometimes has to be changed from problem to problem. 
An alternate approach that is less intensive and computationally more economical is detailed 
below. 

Approach 2 
(1) At time tini compute Δfm 
(2) Advance the solution to time tref 
(3 Compute refinement indicators on the mesh based on temperature distribution at rref: 

check maximum value of refinement indicator. If maximum value < preset limit, go to (5). 
(4) Refine and/or coarsen the mesh based on the refinement indicators using the nodal values 

at time fref 
(5) Update: 

(6) Go to step (1) 
A disadvantage of this approach is that inaccuracies may accumulate when thermal fluxes or 

temperature boundary conditions acting on a domain are highly transient in behaviour. 

Time step estimation 
The allowable time step Δtm is restricted by the stability constraints and spatial accuracy 

requirements of the scheme. For one-dimensional heat conduction, with constant thermophysical 
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properties, the allowable time step is estimated by: 

where cs is a time step factor that influences solution accuracy, K the thermal diffusivity (= k/pc), 
and Ax the element length. Appropriate values for cs depend on the time marching scheme used 
as well as the order of polynomials used for element interpolation functions. Examples of cs 
values are given in the applications section. For two-dimensional heat conduction problems the 
maximum allowable time steps are calculated as: 

where KX and Ky are the diffusivities in the x and y directions. 

Bandwidth minimization 
An implicit set of global equations is formed by the assembly of element equations such as 

that given by (25). The global equations are solved at each time step by Gauss elimination. To 
decrease storage requirements global arrays for conductance and load are stored in profile form 
in columns above the principal diagonal. The full conductance matrix is not stored since the 
conductivity tensor is symmetric resulting in a symmetric global conductance matrix. The 
maximum column height of each node (or equation) is dependent on the element connectivity 
matrix, and, the storage requirements for the upper half of the global matrix is a function of 
the column heights of all equations. 

The adaptive refinement scheme operates by enriching and coarsening a mesh. At each 
adaptation, nodes are added or removed, changing the element connectivity matrix. To reduce 
the storage requirement and increase computational efficiency, a bandwidth reduction scheme 
is used on the mesh obtained after each adaptation. A node numbering scheme assigns new 
nodal identities to existing nodes such that the difference in node numbers between related nodes 
for each element is decreased. This reduces the bandwidth of the global matrix and thus its 
storage requirements. 

The bandwidth reduction scheme used is the one proposed by Collins11, modified for elements 
with quadratic element interpolation functions. The scheme generates for each node in the mesh, 
a list of 'neighbour' nodes—a neighbour node being defined as a node that shares an element 
with this particular node. For an unstructured mesh the number of neighbouring nodes will 
vary depending on how many quadrilateral and triangular elements share this node. A node 
renumbering scheme is initiated with each node, in turn, being the starting point for this 
restructuring. The bandwidth for each renumbering scheme is compared during this renumbering 
procedure with the current minimum bandwidth and a scheme is abandoned whenever the 
bandwidth exceeds the minimum bandwidth calculated thus far. The number of renumbering 
schemes started is equal to the number of physical nodes in the domain. Nodes associated with 
the nodeless variables in elements are not considered as candidates for starting the renumbering 
scheme. 

In the two-dimensional heat transfer examples presented in this paper, typical reductions in 
bandwidth ranges from factors of 10 to 20. This reduction in bandwidth reduces the storage 
requirements of the global arrays by factors up to 10. 

APPLICATIONS 
The effectiveness of the adaptive unstructured mesh refinement procedure for predicting transient 
temperature distributions is demonstrated for heat transfer problems in one and two dimensions. 
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In the examples presented transient heat conduction is modelled with fixed temperatures and 
specified heat flux boundary conditions. Internal heat generation is included and thermophysical 
properties are assumed constant for computational convenience. Nodal temperatures obtained 
from the finite element approach are compared with available exact solutions to arrive at nodal 
errors. These errors are used to measure the spatial and temporal accuracy of the adaptive 
scheme. The number of nodes used to model the domain, maximum allowable time step used, 
and temperature distributions obtained are monitored as the transients develop. 

For the applications presented below the finite element mesh used at the initial time is uniform 
with small spatial dimensions. Small element sizes are needed to model high gradients that may 
be present very early in the thermal transient. Although the initial mesh is very fine over the 
entire domain, the adaptation scheme rapidly reduces the problem size by coarsening elements 
that are not located at regions of high gradients. The decision as to when and how much to 
adapt a mesh during the transient is based on the physics of the problem. If the initial mesh is 
fine and high gradients that exist during early transients are to be captured accurately, adaptations 
are not done very frequently during this period. 

One-dimensional heat conduction 
The problem statement for heat conduction in an aluminium strip is shown in Figure 4. The 

strip is initially at 295K and the right end of the strip is held at this temperature. The left end 
has a heat flux q = 88.9 kW/m2 applied at time zero, and the heat flux is held constant. Gradients 
develop in the strip gradually and the temperature distribution attains steady state given by a 
linear temperature profile. The physical properties of the strip are taken as: 

The mesh used to start the analysis has a uniform spacing of 2.38 x 10 - 3 m with the domain 
being modelled by 128 elements. Initially adaptations are done every 0.1 sec, and at the end of 
1 sec, adaptations are done every 10 sec. The refinement and derefinement threshold values were 
set to 0.8 and 0.1 respectively. These threshold values were obtained as a result of numerical 
experimentation aimed at striking a balance between solution accuracy and minimizing number 
of elements used. The time marching strategy used for this example is 'Approach 1' described 
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in the previous section. An iterative scheme12 with 0 = 0 in (25), was used to march the solution 
out in time with the time step factor cs set to 0.05. The low value of cs is due to the quadratic 
interpolation functions used as well as the iterative scheme employed. 

The temperature distributions at various instances in time are shown in Figure 5 and the 
number of nodes, n, used at these times are also indicated. Exact nodal temperatures were 
obtained using a series expansion13 and nodal errors are computed as the difference between 
exact and finite element temperatures at each node divided by the exact temperature at that 
node. Nodal errors in Figure 6 indicate the maximum errors to be less than 0.5% throughout 
the analysis. The number of nodes in the finite element model during the transient response is 
plotted in Figure 7 illustrating the rapid drop in the number of nodes very early in time. The 
number of nodes at time zero is seen to be 67. This is due to the fact that the maximum value 
of index for refinement counter in Approach 1 was set to unity. This causes the mesh to be 
adapted once, before the analysis is stepped forward in time. At 1 sec, the number of nodes 
needed to model the problem has already dropped down to less than ten. The maximum allowable 
time steps plotted as a function of time in Figure 8 shows the increase in the time steps used as 
the gradients decrease due to conduction effects. The combination of decreased number of 
elements, and increased mesh spacings accelerates the solution to steady state while ensuring 
temporal accuracy. At 2000 sec, the temperature distribution is linear and the temperature at 
the left end is 459 K, which is within 0.05% of the exact calculations. 
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Two-dimensional heat conduction 
Two examples illustrating heat transfer in two dimensional domains are presented. The first 

is a rectangular plate having a uniform temperature distribution initially. High gradients develop 
at the boundaries during the transient due to internal heat generation over the entire domain. 
Exact temperature distributions and temporal histories can be obtained for this problem14, 
making it attractive for validating the adaptive finite element procedure. The second problem 
simulates a cylinder wall instantaneously heated over a small region and an idealized conduction 
model is used to obtain the transient temperature response. Both problems are marched out in 
time using 'Approach 2' described in the previous section. 

Heat transfer in rectangidar plate. The problem statement for heat conduction in a rectangular 
plate is shown in Figure 9. The boundaries of the plate are held at 255K and the internal heat 
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generation rate for the domain is uniform and invariant at 3.21 x 105 kW/m3. The plate is 
assumed to be at an uniform temperature of 255K at time zero and thermal properties of the 
plate are as follows: 

Sharp gradients exist near the boundaries at early time, and these gradients continue to be 
present as the temperature in the interior increases due to heat generation. Using symmetry 
conditions only one-fourth of the plate needs to be modelled but for this example the entire plate 
is considered. 

The finite element mesh used to start the thermal analysis is shown in Figure 10. The mesh 
is adapted every 0.1 sec and the meshes at 0.3 and 0.5 sec are shown in Figure 11. Elements that 
lie along the boundaries are refined while elements at the centre of the domain are coarsened. 
The effectiveness of the adaptation procedure in modelling steep gradients at the boundaries is 
evaluated by examining the temperature distribution along section X1-X2 which passes through 
the centre of the plate. The temperature distribution and nodal errors at 0.5 sec along this line 
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are shown in Figures 12 and 13. The maximum error in the distribution is less than 0.15%. The 
finite element mesh at 2 sec is the same as that at 0.5 sec and the temperature profile and nodal 
errors at this time along section Xt-X2 are shown in Figures 14 and 15. Again the maximum 
nodal error is less than 0.3% underlining the accuracy of the adaptation procedure. The time 
accuracy of the procedure was studied by marching the analysis in time up to 10 sec. Throughout 
the transients it was observed that the maximum error was less than 0.5%. 

Aerothermal heating of leading edge. The effect of shock impingement and augmented heat 
loads on the surface of a high speed flight vehicle, shown in Figure 16 is a problem of current 
interest. A rectangular domain, employing one-half symmetry about the x-axis, is a crude 
representation of a National Aerospace Plane leading edge subjected to intense local heating15. 
An idealization of the leading edge with temperature imposed over a small portion of the left 
boundary is analysed. The heated strip is held at 1000K. The initial and boundary conditions 
for the problem, as well as the initial mesh used for the analysis, are indicated in Figure 17. The 
leading edge is constructed from a nickel-based superalloy and physical properties of the 
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superalloy were taken as: 
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Very steep gradients occur early in the transient and a fine mesh is needed to resolve the high 
temperature gradients. The initial mesh used for the analysis contains 273 uniformly spaced 
nodes. Adaptations are done every 2 sec and refinement and derefinement tolerances are set at 
0.05 and 0.01 respectively. Refinement and derefinement tolerances are set lower for this problem 
to ensure adequate capture of high solution gradients at early time. 

The finite element mesh and temperature contours at 2.2 sec and 4.2 sec are shown in 
Figures 18 and 19. Elements in the lower left corner of the domain that lie near the location of 
the heated section (x = 0, y = 0.1) are refined or held to their initial sizes. Elements at the top 
right corner where no appreciable gradients exist are coarsened continuously. The effectiveness 
of the refinement procedure is evaluated by the temperature distributions along the x and y 
axes at 4.2 sec in Figures 20 and 21. The symbols show the location of the nodes and indicate 
a clustering of elements where strong curvatures exist in the temperature profiles. The number 
of nodes used to model the leading edge during the transient response is plotted in Figure 22 
illustrating the rapid drop in the number of nodes used for description of the temperature profile. 

CONCLUDING REMARKS 
In this paper, an adaptive mesh refinement scheme is developed for modelling transient thermal 
problems. Nodeless variable finite elements with quadratic interpolation functions are used to 
obtain element temperature distributions. These distributions are essential for obtaining 
temperatures of new nodes when a mesh is refined. The finite element mesh is adapted at 
user-specified intervals during the transients, and nodeless variables in each element are used as 
refinement indicators at each adaptation level. 

During transients, the finite element mesh is modified which results in an undesirable increase 
in the size of the global equations. Use of a nodal renumbering scheme reduces the bandwidth 
of these global equations which decreases both storage requirements and computation effort 
needed to solve the set of simultaneous equations. Typical reductions in bandwidth for the 
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examples presented range from factors of 10 to 20. Consequently, storage requirements for global 
arrays are also reduced by factors of up to 10. 

The heat transfer examples in one and two dimensions illustrate the advantages of the adaptive 
scheme. The number of nodes used in the analysis is directly related to the severity of gradients 
as well as their locations. The overall accuracy of the analysis is maintained while the number 
of nodes usually decreases as the gradients in the solution decrease with time. The computational 
effort required to march out to a specified time in the analysis is reduced since elements are 
typically coarsened, causing the maximum allowable time step used in the analysis to be increased. 

The examples presented in this paper illustrate the effectiveness of the adaptive unstructured 
finite element procedure for modelling transient heat transfer response accurately. Steep 
temperature gradients are handled efficiently with elements being enriched wherever needed. The 
number of elements needed to model the physical domain is minimized while spatial accuracy 
is maintained. The methodology used for transient thermal adaptation has good potential for 
extension into other disciplines, such as incompressible flow and viscoplasticity, where spatial 
resolution and temporal accuracy are of prime concern. 
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